You are here

Thomas Barthel

Barthel

Charles H. Townes Assistant Professor of Physics

Theoretical and Numerical Quantum Many-Body Physics:

  • Strongly correlated quantum matter
  • Nonequilibrium phenomena, open quantum systems, and transport
  • Information theoretic aspects like entanglement
  • Integrable models
  • Tensor network state methods (MPS, PEPS, MERA)
  • Quantum computation and simulation for the investigation of quantum matter
  • Ultracold atoms in optical lattices
  • Sotchastic dynamics in networks

Appointments and Affiliations

  • Charles H. Townes Assistant Professor of Physics
  • Assistant Professor of Physics

Contact Information

Education

  • Ph.D. Rheinisch-Westfalische Technische Hochshule Aachen (Germany), 2009

Research Interests

• Strongly correlated quantum many-particle systems
• Nonequilibrium phenomena, open quantum systems, and transport
• Information theoretic aspects like entanglement
• Integrable models
• Tensor network state methods (DMRG, MPS, MERA, PEPS)
• Quantum computation and simulation for the investigation of quantum matter
• Ultracold atoms in optical lattices
• Stochastic dynamics in networks

Courses Taught

  • MATH 690-70: Topics in Applied Mathematics
  • PHYSICS 142L9D: General Physics II (Discussion)
  • PHYSICS 464D: Quantum Mechanics I
  • PHYSICS 590: Selected Topics in Theoretical Physics

Representative Publications

  • Miao, Q; Barthel, T, Eigenstate entanglement scaling for critical interacting spin chains, Quantum, vol 6 (2022) [10.22331/Q-2022-02-02-642] [abs].
  • Barthel, T; Zhang, Y, Solving quasi-free and quadratic Lindblad master equations for open fermionic and bosonic systems, Arxiv:2112.08344 (2021) [abs].
  • Miao, Q; Barthel, T, A quantum-classical eigensolver using multiscale entanglement renormalization, Arxiv:2108.13401 (2021) [abs].
  • Barthel, T; Miao, Q, Scaling functions for eigenstate entanglement crossovers in harmonic lattices, Physical Review A, vol 104 no. 2 (2021) [10.1103/PhysRevA.104.022414] [abs].
  • Barthel, T; Lu, J; Friesecke, G, On the closedness and geometry of tensor network state sets, Arxiv:2108.00031 (2021) [abs].