You are here

Johann Guilleminot

Guilleminot

Paul Ruffin Scarborough Associate Professor of Engineering

Johann Guilleminot is the Paul Ruffin Scarborough Associate Professor of Engineering and an Associate Professor of Civil and Environmental Engineering at Duke University. He joined Duke on July 1, 2017.

Prior to that, he held a Maître de Conférences position in the Multiscale Modeling and Simulation Laboratory at Université Paris-Est in France.

He earned an MS (2005) and PhD (2008) in Theoretical Mechanics from the University of Lille 1 Science and Technology (France), and received his Habilitation (2014) in Mechanics from Université Paris-Est. Habilitation is the highest academic degree in France.

Dr. Guilleminot’s research focuses on uncertainty quantification, computational mechanics and materials science, as well as on topics at the interface between these fields. He is particularly interested in the multiscale analysis of linear/nonlinear heterogeneous materials (including biological and engineered ones), homogenization theory, scientific machine learning, statistical inverse problems and stochastic modeling with applications for computational science and engineering.

Appointments and Affiliations

  • Paul Ruffin Scarborough Associate Professor of Engineering
  • Associate Professor in the Department of Civil and Environmental Engineering
  • Associate Professor in the Thomas Lord Department of Mechanical Engineering and Materials Science

Contact Information

  • Office Location: 172 Hudson Hall, Box 90287, Durham, NC 27708
  • Office Phone: (919) 684-3537
  • Email Address: johann.guilleminot@duke.edu
  • Websites:

Education

  • Ph.D. Lille University of Science and Technology (France), 2008
  • M.S. Lille University of Science and Technology (France), 2005

Research Interests

Computational mechanics, mechanics of heterogeneous materials, molecular dynamics simulations and atomistic-to-continuum coupling, stochastic solvers, statistical inverse problem and model validation, stochastic analysis, uncertainty quantification in science and engineering

Courses Taught

  • CEE 394: Research Independent Study in Civil and Environmental Engineering
  • CEE 421L: Matrix Structural Analysis
  • CEE 530: Introduction to the Finite Element Method
  • CEE 628: Uncertainty Quantification in Computational Science and Engineering
  • CEE 690: Advanced Topics in Civil and Environmental Engineering
  • CEE 702: Graduate Colloquium
  • CEE 780: Internship
  • EGR 393: Research Projects in Engineering
  • ME 524: Introduction to the Finite Element Method
  • ME 758S: Curricular Practical Training
  • MENG 550: Master of Engineering Internship/Project
  • MENG 551: Master of Engineering Internship/Project Assessment

In the News

Representative Publications

  • Staber, B; Guilleminot, J, Stochastic modeling and generation of random fields of elasticity tensors: A unified information-theoretic approach, Comptes Rendus Mécanique, vol 345 no. 6 (2017), pp. 399-416 [10.1016/j.crme.2017.05.001] [abs].
  • Staber, B; Guilleminot, J, Stochastic modeling of the Ogden class of stored energy functions for hyperelastic materials: the compressible case, Zamm Zeitschrift Für Angewandte Mathematik Und Mechanik, vol 97 no. 3 (2017), pp. 273-295 [10.1002/zamm.201500255] [abs].
  • Staber, B; Guilleminot, J, Functional approximation and projection of stored energy functions in computational homogenization of hyperelastic materials: A probabilistic perspective, Computer Methods in Applied Mechanics and Engineering, vol 313 (2017), pp. 1-27 [10.1016/j.cma.2016.09.019] [abs].
  • Staber, B; Guilleminot, J, Stochastic hyperelastic constitutive laws and identification procedure for soft biological tissues with intrinsic variability., Journal of the Mechanical Behavior of Biomedical Materials, vol 65 (2017), pp. 743-752 [10.1016/j.jmbbm.2016.09.022] [abs].
  • Le, TT; Guilleminot, J; Soize, C, Stochastic continuum modeling of random interphases from atomistic simulations. Application to a polymer nanocomposite, Computer Methods in Applied Mechanics and Engineering, vol 303 (2016), pp. 430-449 [10.1016/j.cma.2015.10.006] [abs].
  • Guilleminot, J; Soize, C, Itô SDE-based generator for a class of non-Gaussian vector-valued random fields in uncertainty quantification, Siam Journal on Scientific Computing, vol 36 no. 6 (2014), pp. A2763-A2786 [10.1137/130948586] [abs].

Affiliate Topics in Materials Research