You are here
Gaurav Arya
Professor in the Thomas Lord Department of Mechanical Engineering and Materials Science
My research laboratory uses physics-based computational tools to provide fundamental, molecular-level understanding of a diverse range of biological and soft-material systems, with the aim of discovering new phenomena and developing new technologies. The methods we use or develop are largely based on statistical mechanics, molecular modeling and simulations, stochastic dynamics, coarse-graining, bioinformatics, machine learning, and polymer/colloidal physics. Our current research interests fall within four main themes: genome organization and regulation; polymer-nanoparticle composites; viral-DNA-packaging; and DNA nanotechnology. Please visit our website for more details about each of these research projects.
Appointments and Affiliations
- Professor in the Thomas Lord Department of Mechanical Engineering and Materials Science
- Professor of Biomedical Engineering
- Professor of Chemistry
Contact Information
- Office Location: 144 Hudson Hall, Box 90300, Duke University, Durham, NC 27708
- Office Phone: +1 919 660 5435
- Email Address: gaurav.arya@duke.edu
- Websites:
Education
- New York University, 2007
- Princeton University, 2005
- Ph.D. University of Notre Dame, 2003
- B.Tech. Indian Institute of Technology, Delhi (India), 1998
Research Interests
Molecular modeling, molecular simulations, statistical mechanics, coarse-graining, machine learning, polymer and colloidal physics, polymer-nanoparticle composites, chromatin biophysics, DNA nanotechnology, viral DNA packaging, single-molecule force spectroscopy, nanoscale transport
Courses Taught
- MSEG 591: Independent Study
- ME 582: Applications in Data and Materials Science
- ME 560S: Materials Science and Engineering Seminar
- ME 555: Advanced Topics in Mechanical Engineering
- ME 490: Special Topics in Mechanical Engineering
- ME 419: Molecular Modeling of Soft Matter
- EGR 201L: Mechanics of Solids
- COMPSCI 583: Applications in Data and Materials Science
- BME 792: Continuation of Graduate Independent Study
- BME 791: Graduate Independent Study
- BME 494: Projects in Biomedical Engineering (GE)
- BME 493: Projects in Biomedical Engineering (GE)
In the News
- Researchers Reveal the Inner Workings of a Viral DNA-Packaging Motor (Jun 4, 2021 | Pratt School of Engineering)
- Soft Robotic Dragonfly Signals Environmental Disruptions (Mar 25, 2021 | Pratt School of Engineering)
- Writing New Recipes for High-Performance Materials (Feb 26, 2021 | Pratt School of Engineering)
- Predicting Forces between Oddly Shaped Nanoparticles (Nov 19, 2020 | Pratt School of Engineering)
- Filling an AI and Materials Science Training Gap (Sep 21, 2020)
- DNA-Based Nanobots Earn Duke MEMS Its Fifth DMREF Award for Materials Science (Sep 9, 2019 | Pratt School of Engineering)
- Layered Liquids Arrange Nanoparticles into Useful Configurations (Mar 26, 2019 | Pratt School of Engineering)
Representative Publications
- Pfeifer, WG; Huang, C-M; Poirier, MG; Arya, G; Castro, CE, Versatile computer-aided design of free-form DNA nanostructures and assemblies., Science advances, vol 9 no. 30 (2023) [10.1126/sciadv.adi0697] [abs].
- Zhou, Y; Arya, G, Discovery of two-dimensional binary nanoparticle superlattices using global Monte Carlo optimization., Nature communications, vol 13 no. 1 (2022) [10.1038/s41467-022-35690-8] [abs].
- Lee, BH-J; Kotov, NA; Arya, G, Reconfigurable Chirality of DNA-Bridged Nanorod Dimers., ACS nano, vol 15 no. 8 (2021), pp. 13547-13558 [10.1021/acsnano.1c04326] [abs].
- Pajak, J; Dill, E; Reyes-Aldrete, E; White, MA; Kelch, BA; Jardine, PJ; Arya, G; Morais, MC, Atomistic basis of force generation, translocation, and coordination in a viral genome packaging motor., Nucleic acids research, vol 49 no. 11 (2021), pp. 6474-6488 [10.1093/nar/gkab372] [abs].
- Pajak, J; Atz, R; Hilbert, BJ; Morais, MC; Kelch, BA; Jardine, PJ; Arya, G, Viral packaging ATPases utilize a glutamate switch to couple ATPase activity and DNA translocation., Proceedings of the National Academy of Sciences of the United States of America, vol 118 no. 17 (2021) [10.1073/pnas.2024928118] [abs].
- Lee, BH-J; Arya, G, Analytical van der Waals interaction potential for faceted nanoparticles., Nanoscale horizons, vol 5 no. 12 (2020), pp. 1628-1642 [10.1039/d0nh00526f] [abs].
- Deluca, M; Shi, Z; Castro, CE; Arya, G, Dynamic DNA nanotechnology: Toward functional nanoscale devices, Nanoscale Horizons, vol 5 no. 2 (2020), pp. 182-201 [10.1039/c9nh00529c] [abs].
- Tang, T-Y; Zhou, Y; Arya, G, Interfacial Assembly of Tunable Anisotropic Nanoparticle Architectures., ACS nano, vol 13 no. 4 (2019), pp. 4111-4123 [10.1021/acsnano.8b08733] [abs].
- Kilic, S; Felekyan, S; Doroshenko, O; Boichenko, I; Dimura, M; Vardanyan, H; Bryan, LC; Arya, G; Seidel, CAM; Fierz, B, Single-molecule FRET reveals multiscale chromatin dynamics modulated by HP1α., Nature communications, vol 9 no. 1 (2018) [10.1038/s41467-017-02619-5] [abs].
- Shi, Z; Castro, CE; Arya, G, Conformational Dynamics of Mechanically Compliant DNA Nanostructures from Coarse-Grained Molecular Dynamics Simulations., ACS nano, vol 11 no. 5 (2017), pp. 4617-4630 [10.1021/acsnano.7b00242] [abs].